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The main modulation types selected for future Galileo signals are sine and cosine Binary-
Offset-Carrier (SinBOC/CosBOC) modulations. On one hand, BOC-modulated signals have
a narrower main lobe of theirAutocorrelation Function (ACF), which allows a better accuracy
in the delay tracking process. On the other hand, the acquisition process becomes more
complex, due to the ambiguities in theACF, which impose a large number of timing hypotheses
for accurate detection of the signal. Several BPSK-like methods have been proposed in the
literature so far and they are based on the idea that the BOC-modulated signal can be seen
as a superposition of two BPSK-modulated signals, located at negative and positive sub-
carrier frequencies. If only one band (i.e., positive or negative) is used, we have a single
SideBand (SB) technique. If both bands are used (and combined non-coherently) we have
a dual SB technique. While removing the non-ambiguities in the ACF, both single and dual
SB techniques suffer of performance degradation compared to a pure BPSK method, due to
the non-coherent processing and to the deterioration of the correlation function properties
after filtering or band selection. This paper proposes a comprehensive theoretical analysis of
the properties of the BPSK-like techniques, based on the statistics of the detection variables,
obtained from the simulations.

I. Background and motivation

BINARY-Offset-Carrier modulation families1 are the main proposals for the modulation type of Galileo Open
Services (OS) and Publicly Regulated Services (PRS) signals. Their main advantage is a better use of the

spectrum, which makes the separation with GPS signals easier.1,2 Compared with the classical BPSK-modulated
pseudorandom (PRN) code, a BOC-modulated PRN signal has additional peaks in the autocorrelation function.
The width of the main lobe of the ACF decreases (compared with BPSK, where the main lobe width is 2 chips), but
additional sidelobes appear in the 2-chip interval, which makes the ACF to become “ambiguous”.3,4 This translates to
the fact that the step (�t)bin of searching the time bins in the acquisition process should be sufficiently small, in order
to be able to detect the main lobe of the ACF (i.e., we need a higher number of timing hypotheses in order to search
a given time-uncertainty window compared to BPSK case).5 Thus, the acquisition becomes more computationally
expensive, the computational load being inversely proportional with the time-bin size (or step) (�t)bin.5 This step
should be, typically, about half of the width of the main lobe, which, in its turn, is dependent on the modulation order
NBOC (defined here as twice the ratio between the sub-carrier frequency fsc and the chip rate fc, according to.6) For
example, for SinBOC(1, 1) case, proposed for Galileo OS,7 we have 2NBOC − 1 = 3 significant lobes of the absolute
value of the ACF and the width of the main lobe of the ACF envelope can be easily computed as 0.68 chips.
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In order to avoid the ambiguities of the ACF and to be able to increase the step between timing hypotheses
in the acquisition process (and thus, to decrease the acquisition time), the so-called ‘BPSK-like’ techniques have
been proposed in the literature.3–5,8 The ‘BPSK-like’ techniques remove the effect of the sub-carrier modulation, by
implementing a pair of single sideband correlation receivers, which might be used individually (single SB case) or
combined non-coherently (dual SB case).

The main disadvantage of the BPSK-like techniques is the presence of some correlation losses (compared with a
BPSK-modulated signal), mentioned in,3–5 but not analyzed theoretically so far. The goal of our paper is to introduce
a theoretical analysis of the BPSK-like techniques for the derivation of the expected detection probability and Mean
Acquisition Times (MAT). The theoretical analysis is based on chi-square central and non-central distributions of
the decision variables and the parameters of these distributions are estimated based on simulation results. We will
show that the variances and non-centrality parameters for these distributions are distinct for SinBOC and CosBOC
cases, and they are dependent on the modulation order for SinBOC cases. These results had not been shown before,
to the author’s knowledge.

Three cases will be discussed here: the ambiguous-BOC approach, the non-ambiguous single-SB technique and the
non-ambiguous dual-SB technique. The BPSK case is also kept as a performance bound, in order to illustrate the gap
between the ‘BPSK-like’techniques and the true BPSK case. We present a comprehensive approach for computing the
detection probability for the serial search, by taking into account all the possible timing hypotheses (this is different
from,4 where only one timing hypothesis is considered at a time). We also discuss the impact of small frequency
errors on the performance on each algorithm. The detection probability curves are presented for CosBOC(15,2.5)-
modulated pseudorandom codes with the parameters taken from Galileo proposals for PRS signals, which have an
increased number of ambiguities, and therefore, are likely to benefit the most from ‘BPSK-like’ approaches.

II. BPSK-like techniques
The block diagrams of the single-SB method is illustrated in Fig. 1, for Upper SideBand (USB) processing.5,8

The same is valid for the Lower SideBand (LSB) processing. The main lobe of one of the sidebands of the received
signal (upper or lower) is selected via filtering and correlated with a reference code, with tentative delay τ̂ and
reference Doppler frequency f̂D . The reference code is obtained in a similar manner with the received signal, hence
the autocorrelation function is no longer the ACF of a BOC-modulated signal, but it will resemble the ACF of a
BPSK-modulated signal. However, the exact shape of the resulting ACF is not identical with the ACF of a BPSK-
modulated signal, since some information is lost when filtering out the sidelobes adjacent to the main lobe. This
filtering is needed in order to reduce the noise power.

When the dual-SB method is used, we add together the USB and LSB outputs and form the dual SB statistic.
The ‘BPSK-like’ techniques refer to single and dual SB processing.

The ambiguous-BOC processing means that the received signal is directly correlated with the reference BOC-
modulated PRN sequence (all the spectrum is used for both the received signal and reference code). The BPSK case
refers to the situation when the transmitted signal is BPSK modulated and the correlation is done with a reference
BPSK-modulated PRN code.

Fig. 1 Block diagram of single sideband processing (here, upper sideband).
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Fig. 2 Shape of the envelope of the autocorrelation function for BPSK, BOC and BPSK-like waveforms with different
front-end bandwidths. OS signals (upper plots) and PRS signals (lower plots).

Examples of the ACF shape after single and dual SB processing are shown in Fig. 2, for SinBOC(1, 1) and,
respectively, CosBOC(15, 2.5) signals, currently selected for OS and PRS services.9 The ambiguous-BOC waveform
and the reference-BPSK case are also shown. In the left plots, the signal before SB processing is assumed to have
infinite bandwidth (BW), hence, we have sharp peaks in the BOC waveform. The filters for SB processing are
assumed to be ideal rectangular filters. The effect of non-ideal filtering on the ACF waveforms is shown in the right
plots of Fig. 2. Here, Finite Impulse Response (FIR) filters of bandwidths 4 MHz and 40 MHz have been used
for OS and PRS, respectively. We notice that the peaks of the ACF become flatter, and the fades of the ACF may
have a fluctuating level (e.g., lower right plot of Fig. 2). Non-constant group delay filters (such as Chebyshev or
Butterworth) may introduce some additional, non-constant, delay in the ACF, which should be taken into account
during the synchronization process, as emphasized in4. In what follows, we will focus on the infinite bandwidth
situation, since this case will give the bound on the performance of the discussed techniques.

III. Statistical modelling of decision variables
The decision statistic Zmethod(�τ̂ , �f̂D) is the output of the non-coherent integration, depending on the delay

error �τ̂ and Doppler error �f̂D . Here, the method refers to one of the following cases, discussed in the previous
Section: ambiguous BOC (BOC), single SB (SSB), dual SB (DSB), or BPSK (i.e., BPSK modulation was used at
the transmitter).

We assume that coherent integration is done over Nc code epochs (one code epoch has a duration SF Tc, where SF

is the spreading factor of the PRN code and Tc = 1/fc is the chip interval), followed by non-coherent integration on
Nnc blocks. Obviously, if the delay error is higher (in absolute value) than one chip (i.e., |�τ̂ | ≥ Tc) or the Doppler
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error is higher than the inverse of the coherent integration time (i.e., |�f̂D| < 1/(NcSF Tc), we are in an incorrect
bin, i.e., the test statistic is based on noise only. If |�τ̂ | < Tc and |�f̂D| < 1/(NcSF Tc), we are in a correct bin, i.e.,
the test statistic includes both signal and noise. Depending on the step of searching the time and frequency bins, we
may have several correct bins. In what follows, we assume that the step between the frequency hypotheses is the
inverse of the coherent integration time 1/(NcSF Tc) and the step between timing hypotheses is (�t)bin (less than
one chip). Therefore, we may have Nt = � 2Tc

(�t)bin
� correct timing hypotheses, where �x� stands for the highest integer

smaller or equal to x.
For BOC and BPSK cases, it is well known that the distribution of ZBOC(·) and ZBPSK(·) is a central or non-

central chi-square distribution, according to whether we are in an incorrect or a correct bin, respectively.4,10–12 This
is valid in static channels and it is due to the fact that the output of the coherent integration is a complex Gaussian
variable, due to the additive white noise real and imaginary parts. The underlying chi-square distributions have 2Nnc

degrees of freedom and a variance equal to σ 2
nb/(NcNnc), where σ 2

nb is the narrowband noise spectral power density
(double-sided), related to the Carrier-to-Noise Ratio (CNR) as follows:12

σ 2
nb = Eb10−(CNR[dB/Hz]−30)/10 (1)

Above, Eb is the signal energy (per transmitted code epoch, which is equal here to SF Tc = 1 ms). The square-root λ

of the non-centrality parameter of the non-central chi-square distribution is a function F(·) of the delay and Doppler
errors as follows:4,12

λ = √
EbF(�τ̂ , �f̂D) = √

Eb

∣∣∣∣R(�τ̂ )
sin(π�f̂DTcoh)

π�f̂DTcoh

∣∣∣∣, (2)

where R(�τ̂ ) is the ACF value at delay error �τ̂ for the BOC-modulated PRN code, and Tcoh = NcSF Tc is the
coherent integration time.

When single or dual SB methods are used, the test statistics ZSSB(·) and ZDSB(·) are expected to be also chi-square
distributed (central or non-central), due to the fact that, applying a linear filter on a complex Gaussian distribution
preserves the same distribution at the output. However, the variance and non-centrality parameter are likely to be
changed, due to the fact that only the main lobe of the signal spectrum is used at the receiver.

In order to find the exact values for the variance and non-centrality parameter for single and dual SB, we carried
out several simulations for various SinBOC and CosBOC modulations and for various delay and Doppler errors. The
resulting parameters are summarized in Table 1 and eq. (3), and some examples of the distribution matching between
theory and simulations are shown in Fig. 3. The simulations were carried out for an oversampling factor of Ns = 2
sub-samples per BOC interval.

In Table 1, x is a parameter accounting for the correlation losses and filtering effects in the single and dual SB
processing. Simulation results showed that the best distribution matches are obtained for x slightly higher than the
energy per main lobe, as follows:

x =
{

0.5 for SinBOC with NBOC = 2

0.39 for CosBOC ∀ NBOC
(3)

Table 1 Parameters of the central and non-central chi-square distributions of
the test statistic Zmethod(·).

Square-root of Degrees of
non-centrality parameter freedom

Method Variance σ 2 λ (if correct bin) Ndeg

BOC/BPSK σ 2
nb/(NcNnc)

√
EbF(�τ̂ , �f̂D) 2Nnc

Single SB xσ 2
nb(NcNnc) x

√
EbF(�τ̂ , �f̂D) 2Nnc

Dual SB xσ 2
nb/(NcNnc) x

√
2EbF(�τ̂ , �f̂D) 4Nnc
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Fig. 3 Matching between theoretical (Th) and simulation-based (Sim) distributions of the test statistic Zmethod(·)
for single and dual SB. Upper: SinBOC(1, 1), single SB, CNR = 30 dB/Hz, Nc = 10, Nc = 2, �f̂D = 0 Hz. Lower:
CosBOC(15, 2.5), dual SB, CNR = 35 dB/Hz, Nc = 8, Nc = 1, �f̂D = 25 Hz.

Intuitively, the values given by eq. (3) for the parameter x can be explained due to some correlation losses associated
with the filtering and due to the modification of the reference code (which can be seen as a decrease of the non-
centrality parameter), together with some decrease in the noise variance (due to the filtering of the signal and noise,
as seen in Fig. 1). The x parameter should be (intuitively) close to the fraction of power per main lobe of the power
spectral density of the BOC-modulated signal, an assumption which is indeed verified by our results (e.g., the power
per main lobe of the SinBOC(1, 1) signal is around 0.4279 of the total power, if the total power was normalized to
1, and the value for x, namely x = 0.5 for SinBOC(1, 1), is slightly above this fraction).
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For SinBOC modulation of higher orders, different values of x have been found, such as x = 0.46 for NBOC =
3, 4, 5, 6 and x = 0.41 for NBOC = 7. Typically, the higher NBOC order, the higher are the correlation losses. On the
other hand, due to an increased number of fades in the envelope of the ACF of a sine or cosine-BOC modulation
with high NBOC, the benefit of using a BPSK-like method for high modulation orders could be quite significant in
terms on CNR as the simulation results will show.

The number of degrees of freedom for dual SB method (see Table 1) is 4Nnc, because, before the non-coherent
integration process, we have 4 real Gaussian variables, coming from the real and imaginary parts of the noise in the
upper band, and respectively in the lower band.10

Examples of the simulation-based normalized histogram and the theoretical chi-square Probability Distribution
Function (PDF) for correct and incorrect bins are shown in Fig. 3, for SinBOC(1,1) and CosBOC(15,2.5), respectively.
The considered correct bin has �τ̂ = 0 and a small Doppler error, specified in the figure caption. We remark that
similar good matching has been obtained for various other CNR levels, Doppler errors, coherent and non-coherent
integration times and BOC modulation orders.

The Cumulative Distribution Function (CDF) under correct and incorrect-bin hypotheses can be written as13

Fc(z) = 1 −
Ndeg/2−1∑

k=0

e
− z

σ2

( z

σ 2

)k 1

k! in incorrect bins

Fnc(z, λ) = 1 − QNdeg/2

(
λ
√

2

σ
,

√
2z

σ

)
in correct bins,

(4)

with σ 2, Ndeg , and λ given in Table 1 and QNdeg/2(·) being the generalized Marcum-Q function.13

IV. Detection-probability and MAT computation for serial search acquisition
The detection probability per bin Pdbin

(�τ̂ ) is the probability that the decision variable is higher than a decision
threshold γ , provided that we are in a correct bin (hypothesis H1). Similarly, the false alarm probability Pf a is the
probability that the decision variable is higher than γ , provided that we are in an incorrect bin (hypothesis H0. From
the definition of the CDF, it follows that

Pdbin
(�τ̂ , �f̂D) = 1 − Fnc(γ, λ)

Pf a = 1 − Fc(γ )
(5)

Above, λ (and, thus, Pdbin
also) is dependent on the method and on the delay and Doppler errors associated with the

considered bin. Since we have several (i.e., Nt ) correct bins, the global detection probability Pd can be computed as
follows:

Pd(�τ0) =
Nt−1∑
k=0

Pdbin

(
�τ0 + k(�t)bin, �f̂D

) k−1∏
i=0

(
1 − Pdbin

(�τ0 + i(�t)bin, �f̂D)
)

(6)

that is, the sum of probabilities of detecting the signal in the i-th bin, provided that all the previous tested hypotheses
for the prior correct bins gave a mis-detection. In eq. (6), �τ0 is the delay error associated with the first sampling
point in the two-chip interval where we have the Nt correct bins. Eq. (6) is valid only for fixed sampling points.
However, due to the random nature of the channels, the sampling point (with respect to the channel delay) is randomly
fluctuating, hence, the global Pd will be computed as the expectation operator E(·) over all possible initial delay
errors (under uniform distribution, we simply take the temporal mean):

Pd = E�τ0

(
Pd(�τ0)

)
. (7)
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Fig. 4 Examples of sampling sequences capturing the Nt possible correct bins for the decision statistic of a
SinBOC(1, 1)-modulated signal; ambiguous BOC method.

Figure 4 illustrates the idea of computing the global Pd . Here, two possible sampling sequences are shown. The
total number of sampling sequences depends on a discrete step, chosen sufficiently small. The step of searching the
time bins in this figure is (�t)bin = 0.2 chips.

The mean acquisition time T acq for the serial search can be computed according to the global Pd , the false alarm
Pf a , the penalty time Kpenalty and the total number of bins in the search space q:4

T acq = 2 + (2 − Pd)(q − 1)(1 + KpenaltyPf a)

2Pd

τd, (8)

where τd = NcNncSF Tc is the dwell time, and Pd and Pf a are given by eqs. (5) to (8).

V. Simulation results
In the simulations, we considered PRN codes of length SF = 1023, modulated via CosBOC(15, 2.5) modulation

(i.e., PRS signals). The false alarm probability was assumed to be Pf a = 10−3. The detection threshold γ was
computed according to this Pf a , and used then in the calculus of Pd . The MAT curves may be easily derived from
eq. (8) and from the detection probability curves.

The detection probability for various CNR values, assuming a step of �τ̂ = 0.05 chips or 0.5 chips, respectively,
is shown in Fig. 5. As seen in Fig. 5, there is a significant gain in terms of detection probability if we use a BPSK-like
technique and a step of 0.5 chips, instead of using the ambiguous-BOC method. On the other hand, if the step is
small (less than half of the main lobe of the ACF), there is only slight improvement of a single-SB technique versus
the ambiguous-BOC case, and only about 1 dB gain of the dual-SB technique versus the ambiguous-BOC case. Due
to the processing losses, BPSK-like techniques are quite far from the BPSK bound, but they still offer improvement
over the ambiguous-BOC processing.
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Fig. 5 Detection probability as functions of CNR for CosBOC(15, 2.5) and two steps �τ̂ = 0.05 chips (upper) and
�τ̂ = 0.5 chips (lower). �f̂D = 0, Nc = 40 ms; Nnc = 1 blocks.

The impact of frequency errors on the Pd is shown in Fig. 6 for Nc = 40 ms. All the considered methods suffer
of fast performance deterioration when the Doppler errors increases above one fifth of the coherent integration
time.

We also remark from Fig. 5, that the losses reported in5 (of 3 dB of single-SB compared to BPSK bound and
of 0.5 dB of dual-SB compared with BPSK bound) are not always true, and they depend on the step ((�t)bin) and
on the modulation order. For example, for a step (�t)bin = 0.5 chips, the losses are higher than given in5 for dual
SB of CosBOC(15, 2.5) modulation (we loose about 1.5 dB when using dual-SB processing compared to BPSK
bound).
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Fig. 6 Detection probability as functions of the small Doppler error �f̂D , CosBOC(15, 2.5), CNR = 25 dB/Hz;
Nc = 40 ms; Nnc = 1 blocks, �τ̂ = 0.5 chips.

VI. Conclusions
In this paper, we presented a theoretical analysis of the BPSK-like methods in the context of BOC-modulated

signals for serial search acquisition. Our analysis was based on the statistical modelling of the decision variables in
the acquisition process. We also presented a comprehensive approach for computing the detection probability for the
serial search, by taking into account all the possible timing hypotheses. We showed that there is significant gain in
terms of detection probability if dual-SB technique is used to remove the ambiguities of the correlation function, since
higher steps of searching the timing hypotheses can be employed. We also showed that both BPSK-like techniques
(single and dual SB) do not reach the BPSK bound. We also illustrated the effect of small residual Doppler frequency
errors on the performance of BPSK-like algorithms.
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